Global smooth solutions of some quasi-linear hyperbolic systems with large data

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lifespan of Classical Solutions to Quasi-linear Hyperbolic Systems with Small BV Normal Initial Data

In this paper, we first give a lower bound of the lifespan and some estimates of classical solutions to the Cauchy problem for general quasi-linear hyperbolic systems, whose characteristic fields are not weakly linearly degenerate and the inhomogeneous terms satisfy Kong’s matching condition. After that, we investigate the lifespan of the classical solution to the Cauchy problem and give a shar...

متن کامل

Global Continuous Solutions for Diagonal Hyperbolic Systems with Large and Monotone Data

In this paper, we study diagonal hyperbolic systems in one space dimension. Based on a new gradient entropy estimate, we prove the global existence of a continuous solution, for large and non-decreasing initial data. We remark that these results cover the case of systems which are hyperbolic but not strictly hyperbolic. Physically, this kind of diagonal hyperbolic system appears naturally in th...

متن کامل

Stability of Quasi-linear Hyperbolic Dissipative Systems

1. Introduction In this work we want to explore the relationship between certain eigenvalue condition for the symbols of first order partial differential operators describing evolution processes and the linear and nonlinear stability of their stationary solutions. Consider the initial value problem for the following general first order quasi-linear system of equations

متن کامل

Elementary Interactions in Quasi-linear Hyperbolic Systems

where t>0, o o < x < o o , U(t, x)=(u(t, x), v(t, x)), and the function F(U)= (f(u, v), g(u, v)) is smooth. GLIMM [2] has proved existence of a weak solution provided that the variation of the initial data Uo(x) is small. GLIMM & LAX [3] then improved this result by requiring that the oscillation of Uo(x) be small. SMOLLER [7] has proved the existence of a weak solution provided that Uo(x ) is ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales de la faculté des sciences de Toulouse Mathématiques

سال: 1999

ISSN: 0240-2963

DOI: 10.5802/afst.947